7th hour MATH-RTI

Lesson: Multiplying Polynomials

Name:________Score:______

Simplify each product.

1.
$$2x(x + 8)$$

2.
$$(n + 7)5n$$

3.
$$6h^2(7+h)$$

4.
$$-b^2(b-10)$$

5.
$$-3c(8 + 2c - c^3)$$

6.
$$y(2y^2 - 3y + 6)$$

7.
$$4t(t^2-6t+2)$$

8.
$$-m(4m^3 - 8m^2 + m)$$

9.
$$7j(-2j^2 - 8j - 3)$$

10.
$$-t^2(2t^4+4t-8)$$

11.
$$2k(-3k^3 + k^2 - 10)$$

12.
$$8a^2(-a^7 + 7a - 7)$$

13.
$$4v^3(2v^2 - 3v + 5)$$

14.
$$5d(-d^3 + 2d^2 - 3d)$$

15.
$$11w(w^2 + 2w + 6)$$

Simplify. Write in standard form.

1.
$$-3\underline{x}(4x^2 - 6x + 12)$$

2.
$$-7y^2(-4y^3 + 6y)$$

3.
$$9\underline{a}(-3a^2 + a - 5)$$

4.
$$p(p+4) - 2p(p-8)$$

5.
$$t(t+4)+t(4t^2-2)$$

6.
$$6\underline{c}(2c^2-4)-c(8c)$$

7.
$$-5\underline{m}(2m^3 - 7m^2 + m)$$

8.
$$2q(q+1) - q(q-1)$$

9.
$$-n^2(-6n^2+2n)$$

Problem Solving

A cylinder has a radius of $3m^2n$ and a height of 7mn. The formula for the volume of a cylinder is $V = \pi r^2h$, where r is the radius and h is the height. What is the volume of the cylinder? Simplify your answer.

7th hour MATH-RTI

Lesson: Multiplying Polynomials

Name:	Date:	Score:

USING MODELS to MULTIPLY - ALGEBRA TILES

You can use algebra tiles to model the multiplication of two binomials.

Activity

Find the product (x + 4)(2x + 3).

The product is $2x^2 + 11x + 12$.

You can also model products that involve subtraction. Red tiles indicate negative variables and negative numbers.

Activity

Find the product (x-1)(2x+1).

$$2x^2 + x - 2x - 1$$

$$2x^2 - x - 1$$

Add coefficients of like terms.

The product is $2x^2 - x - 1$.

Exercises

Use algebra tiles to find each product.

1.
$$(x+4)(x+2)$$

2.
$$(x+2)(x-3)$$

3.
$$(x+1)(3x-2)$$

4.
$$(3x+2)(2x+1)$$

7th hour MATH-RTI

Lesson: Multiplying Binomials

Name:	Date:	Score:

Objective: To multiply two binomials or a binomial by a trinomial.

Example 1: Using the distributive property

What is a simpler form of (2x + 4)(3x - 7)?

$$(2x + 4)(3x - 7) = 2x(3x - 7) + 4(3x - 7)$$
 Distribute the second factor, $3x - 7$.
 $= 6x^2 - 14x + 4(3x - 7)$ Distribute $2x$.
 $= 6x^2 - 14x + 12x - 28$ Distribute 4 .
 $= 6x^2 - 2x - 28$ Combine like terms.

Example 2: Using a table

What is a simpler form of (x-3)(4x-5)?

Know

Binomial factors

Need

Product of binomials written in standard form

Plan

Use a table.

Make a table of products.

9 16		- 50
	4x	-5
x	4x2	-5x
-3	-12x	15

When labeling the rows and columns, think of x - 3 as x + (-3). Think of 4x - 5 as 4x + (-5).

The product is $4x^2 - 5x - 12x + 15$, or $4x^2 - 17x + 15$.

Example 3: Using FOIL

What is a simpler form of (5x - 3)(2x + 1)?

First Outer Inner Last
$$(5x-3)(2x+1) = (5x)(2x) + (5x)(1) + (-3)(2x) + (-3)(1)$$

$$= 10x^2 + 5x - 6x - 3$$

$$= 10x^2 - x - 3$$

The product is $10x^2 - x - 3$.

Simplify each product using the Distributive Property.

1.
$$(x + 3)(x + 8)$$

2.
$$(y-4)(y+7)$$

3.
$$(m+9)(m-3)$$

4.
$$(c-6)(c-4)$$

5.
$$(2r-5)(r+3)$$

6.
$$(3x+1)(5x-3)$$

7.
$$(d+2)(4d-3)$$

8.
$$(5t-1)(3t-2)$$

Simplify each product using a table.

10.
$$(x+3)(x-5)$$

11.
$$(a-2)(a-13)$$

12.
$$(w-4)(w+8)$$

13.
$$(5h-3)(h+7)$$

14.
$$(x-3)(2x+3)$$

15.
$$(2p+1)(6p+4)$$

Simplify each product using the FOIL method.

16.
$$(2x-6)(x+3)$$

17.
$$(n-5)(3n-4)$$

18.
$$(4p^2+2)(3p-1)$$

19.
$$(a+7)(a-3)$$

20.
$$(x+3)(3x-2)$$

21.
$$(k-9)(k+5)$$

22.
$$(b-5)(b-11)$$

23.
$$(4m-1)(m+4)$$

25.
$$(2h+6)(5h-3)$$

26.
$$(3w+12)(w+3)$$

7th hour MATH-RTI

Lesson: Applying Multiplication of Binomials

Name: Date: Score:

Example:

Multiple Choice A cylinder has the dimensions shown in the diagram. Which polynomial in standard form best describes the total surface area of the cylinder?

$$2\pi x^2 + 4\pi x + 2\pi$$

$$2\pi x^2 + 4\pi x + 2\pi$$
 $4\pi x^2 + 14\pi x + 10\pi$

B
$$2\pi x^2 + 10\pi x + 8\pi$$
 D $2\pi x^2 + 2\pi x + 10\pi$

$$D 2\pi x^2 + 2\pi x + 10\pi$$

The total surface area (S.A.) of a cylinder is given by the formula S.A. = $2\pi r^2 + 2\pi rh$, where r is the radius of the cylinder and h is the height.

S.A. =
$$2\pi r^2 + 2\pi rh$$

= $2\pi(x+1)^2 + 2\pi(x+1)(x+4)$
= $2\pi(x+1)(x+1) + 2\pi(x+1)(x+4)$
= $2\pi(x^2 + x + x + 1) + 2\pi(x^2 + 4x + x + 4)$
= $2\pi(x^2 + 2x + 1) + 2\pi(x^2 + 5x + 4)$
= $2\pi(x^2 + 2x + 1 + x^2 + 5x + 4)$
= $2\pi(2x^2 + 7x + 5)$
= $4\pi x^2 + 14\pi x + 10\pi$

Surface area of a cylinder

Substitute x + 1 for r and x + 4 for h.

Write $(x + 1)^2$ as (x + 1)(x + 1).

Multiply binomials.

Combine like terms.

Factor out 2π .

Combine like terms.

Write in standard form.

The correct answer is C.

Practice:

1. What is the surface area of the cylinder at the right? Write your answer in simplified form.

- The radius of a cylindrical popcorn tin is (3x + 1) in. The height of the tin is three times the radius. What is the surface area of the cylinder? Write your answer in simplified form.
- The radius of a cylindrical tennis ball can is (2x + 1) cm. The height of the tennis ball can is six times the radius. What is the surface area of the cylinder? Write your answer in simplified form.